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Decision Making Under Ambiguity

The study of decision making under uncertainty has been dominated by a single approach - the

closely related theories of expected utility (EU) and subjective expected utility (SEU). As formulated

and axiomatized by von Neumann and Morgenstern (1944) and Savage (1954), these theories rank

amongst the most important in 20th century social science. They have had a profound influence on

the manner in which social scientists (in particular, economists, psychologists, statisticians,

sociologists, political scientists), describe choice under uncertainty. Moreover, they have provided

the foundation for prescriptive appoaches to decision making (e.g., decision analysis, see, Raiffa,

1968; Keeney & Raiffa, 1976). In one area, however, EU and SEU (hereafter called "utility theory") '-"-

have met with mixed success. This is represented by a host of experiments on choice behavior,

conducted principally by psychologists but also by an increasing number of economists (for a

comprehensive review, see Schoemaker, 1982). On the one hand, utility theory has been enormously .a....... *j.

fruitful in providing a framework within which choice can be studied. On the other, it has failed to

predict certain phenomena, resulting in so called choice paradoxes or anomalies. Furhermore , these

failings have been noted for several decades (cf. Edwards, 1954, 1961). \ ,"

Utility theory has nonetheless proven to be remarkably resilient to the experimental evidence '4'

that has accumulated against it. Indeed, we make this remark despite the fact that several recent

alternative theories succeed in explaining several choice paradoxes (e.g., Bell, 1982; Chew & .

MacCrimmon, 1979; Kahneman & Tversky, 1979; Machina, 1982; Quiggin, 1982). We believe that

three factors have contributed to the longevity of utility theory: (1) the criterion of maximizing

expected (or subjectively expected) utility follows logically from a parsimonious set of axioms. In

addition, each axiom specifies a reasonable principle (e.g., transitivity) such that it provides a - .

description of how a "rational" actor might behave; (2) the theory has provided a useful framework

for deriving empirically testable propositions in many areas of applied economics, e.g., finance,

marketing, law, and so on; (3) the theory is difficult to falsify with naturally occurring data since

exogenous variables can be called upon to explain violations of predictions. Moreover, tests of utility

theory are not as rigorous as they seem in that specific alternatives to the theory are rarely considered..

• .° '. - °°. •."%o
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(for exceptions, see Kunreuther, 1976; Thaler, 1980). In practice, tests of the theory have not

followed a "strong inference" approach (Platt, 1964).

In our view, both utility theory and its alternatives fail to capture three important elements that -

characterize risky decision making. (1) The nature of uncertainty in choice. The dominant metaphor

used to conceptualize risky decision making involves choices between explicit gambles. Moreover, in

both experimental and theoretical work, this notion is made operational by using explicit gambling

devices such as dice, urns, bingo cages, and the like. However, we argue that the nature of the

uncertainty people experience in real world decisions is often quite different from that inherent in

gambling devices. (2) Effects of context. The gamble metaphor.allows one to study the structum of

decisions within a particular context (i.e.,the gambling context). However, people are highly

sensitive to contextual variables and changes in context can strongly affect the evaluation of risk.

(3) Dependence between probabilities and payoffs. All models proposed to date maintain the

assumption that utilities and probabilities combine independently in determining the overall worth of

risky options.We believe that payoffs can systematically affect the weight given to uncertainty,

especially in the presence of ambiguity.

Purpose and Plan of Paper

Our focus in this paper concerns the first issue raised above - the nature of uncertainty and its

representation in theories of choice. The other two issues are briefly considered, particularly in light

of the model developed for dealing with judgments under ambiguity. The paper is organized as

follows: we first discuss the difference between exact probabilities and the more realistic ambiguous

probabilities that characterize most decision making situations. In this regard, we consider the

* paradox due to Daniel Ellsberg (1961), in which choices under ambiguity violate Savage's (1954)

SEU model. A quantitative, psychological model of how people assess uncertain probabilities is then

developed and various implications are derived. Three experimental studies that test the model are

presented. These deal with variations of Ellsberg's paradox, and the setting of buying and selling'.

prices for an insurance policy and a warranty. Finally, our results and model are discussed with

respect to a choice rule for decision making under ambiguity, and extensions of this rule to situations

4I $
i ...
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where probabilities are precisely known.

The Nxuor of Uncertamy and Ambigufry

There are important psychological differences in the way people experience the uncertainty

inherent in gambling devices as compared with those faced in everyday life. In gambling devices, the

nature of uncertainty is explicit since there is a well defined sampling space and sampling procedure.

In contrast, when assessing uncertainty in real world tasks, the precision of the gambling analogy can

be misleading. Specifically, beliefs about uncertain events are typically loosely held and ill-defined.

Moreover, feelings of uncertainty are not limited to random influences that affect outcomes from a

well-defined process (e.g., the proportions of different colored balls in an urn), but can extend to

uncertainty about the underlying data generating process itself. In short, ambiguity or "uncertainty

about uncertainties" is a pervasive element of much real world decision making. We now turn to an

important demonstration of this fact by discussing Ellsberg's paradox (Ellsberg, 1961). ,.

Ellsberg used the following example to demonstrate that uncertainty in choice is not totally

captured by the concept of a "probability." Imagine two urns each containing red and black balls. In

Urn 1, there are 100 balls with unknown proportions of red and black. Urn 2 contains 50 red and50 50"

black balls. Now consider a gamble such that, if you bet on red and it is drawn from the urn, you get

a $100 payoff; similarly for black. If, on the other hand, you bet on the wrong color, the payoff is

$0. First, consider Urn I and ask yourself whether you prefer, or are indifferent to, betting on a red

or black ball (designated R1 and B1 , respectively). Most people are indifferent between red and black

thereby implying that the subjective probabilities of the two events are equal; i.e., p(RI) = p(B 1) =

.5. Next consider the choice of balls in Urn 2, where the proportion of red and black is known to be

.5. Again, most people are indifferent between R2 and B2 , implying that p(R2 ) = p(B2 ) = .5.

Imagine that you are now asked to indicate whether you would prefer to draw a red from Urn I

(unknown proportion of red ) or from Urn 2 (proportion of red = .5). When faced with this

question, many people prefer Urn 2 (rather than express indifference). Note that the choice of Urn 2

over Urn 1 implies that p(R2) > P(R1). However, from the previous choices, p(R 1) = .5 and

p(R2 ) - .5. Hence, there is a contradiction between the probabilities derived from choices within the

Is.'.-'-'* ,p .- ,*,°. '.- ,-'• ".'. .- -," . ",, , " .. . ." ." ... " .- ',. .. " . o' .* ',,'. . ... ,,.,', .... . -. . ,, -. . ' . .J.- 5'."
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urns, to those derived from choices between the urns. Finally, consider being asked to choose

between Urns 1 and 2 if a black ball is to be drawn. Again, most people prefer to draw from Urn 2,

which implies that p(B2 ) > p(B 1). The overall pattern of choices within and between urns leads to

the following,

p(R2 ) > P(R1) = .5 and p(B2 ) > p(B 1) = .5; or,

p(R2 ) = .5 > p(R1 ) and P(B2 ) -. 5 > p(B1)

In the first case, the sum of p(R2 ) and P(B2 ) is greater than one (hereafter called "superadditivity");

in the second case, the sum of p(R1 ) and p(B 1) is less than one (hereafter called "subadditivity").

Thus, either Urn 2 has complementary probabilities that sum to more than one, or Urn I has

complementary probabilities that sum to less than one. As we will show, the nonadditivity of

complementary probabilities is central to judgments under ambiguity.

Ellsberg's paradox demonstrates that although it may seem strange and awkward to speak of

uncertainty as being more or less certain itself, such a concept is crucial for understanding how

people make judgments and decisions in their natural environment. In fact, the notion of uncertainty

about uncertainty has been discussed under a variety of rubrics; e.g., ambiguous probabilities,

second-order uncertainty, and probabilities-for-probabilities (e.g., Marschak, 1975). Moreover,

current work on fuzzy sets (Zadeh, 1978), Shafer's (1976) theory of evidence, Cohen's (1977)

attempt to formalize uncertainty in legal settings, and the elicitation of probability ranges (Wallsten,

Forsyth, & Budescu, 1983), all contain ideas regarding the vagueness that can underlie probabilities.

However, it should be noted that the concept of ambiguous probabilities has not received universal

acceptance (e.g., de Finetti, 1977; also see the various responses to Eilsberg's original article -

Roberts, 1963; Raiffa, 1961; Ellsberg, 1963). Be that as it may, empirical evidence (e.g., Becker &

Brownson, 1964; Curley & Yates, 1985; Girdenfors & Sahlin, 1982; Yates & Zukowski, 1976) has

shown that ambiguity affects judgments and choices and should not, therefore, be ignored.

However, it is one thing to acknowledge the importance of ambiguity (cf. Keynes, 1921, p.71;

Knight, 1921) and another to develop a theory that incorporates it in the assessment of probabilities
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and the dof choices. Before turning to that task, we need to define the concept of

ambiguity more precisely.

Reconsider Urn I (unknown proportion) in Ellsberg's problem and note that all probability

distributions over the proportions of red and black are equally likely. Now imagine that one samples

four balls (without replacement) and gets 3 reds and I black. The proportion of red is now restricted

to .03 + x (where 0:< x:9.96) and the proportion of black to .97 -x. This result rules out certain

probability distributions, thereby making others more likely. Indeed, as sample size increases, further

distributions are ruled out until only one is left We can now distinguish between ignorance,
ambiguity, and risk according to the degree to which one can rule out alternative distributions; that is,

ambiguity is an intermediate state between ignorance (no distributions are ruled out) and risk (all but

one distribution is ruled out). Thus, ambiguity results from the uncertainty associated with specifying

which of a set of distributions is appropriate in a given situation. Moreover, the amount of ambiguity

is an increasing function of the number of distributions that are not ruled out by one's knowledge of

the situation.

As pointed out by Eflsberg (1961), various factors can affect ambiguity in addition to the

amount of information (such as sample size). For example, ambiguity will generally be high when

evidence is unreliable and conflicting, or the causal process generating outcomes is poorly

understood. On the other hand, well-known random processes (such as flipping coins or dice) are

uncertain but not ambiguous since the probabilities are well specified. The following example, given
2 .by Girdenfors and Sahlin (1982), is useful in distinguishing between uncertainty, ignorance, and

ambiguity.

Consider Miss Julie who is invited to bet on the outcome of
three different tennis matches. As regards match A, she is very
well-informed about the two players.... Miss Julie predicts that
it will be a very even match and a mere chance will determine the
winner. In match B she knows nothing whatsoever about the relative
strength of the contestants... Match C is similar to match B except
that Miss Julie has happened to hear that one of the contestants is an
excellent tennis player although she does not know anything about
which player it is, and that the second player is indeed an amateur so
that everyone considers the outcome of the match a foregone
conclusion. (pp. 361-362)

0 f.
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We argue that match A is uncertain but not ambiguous (analogous to Urn 2 in Ellsberg's

paradox), match B reflects ignorance (analogous to Ellsberg's Urn 1 since all distributions over the

probability of winning are equally likely), and match C is ambiguous since the probability of each

player winning is either 0or 1.

Ellsberg's paradox demonstrates ambiguity avoidance since people prefer to draw from the

unambiguous urn. Indeed, Ellsberg (1961, p. 666) stated that ambiguity avoidance helps to explain

why new technologies are resisted more than one would expect on the basis of their first-order

probabilities of accidents, failures, and so on. However, are there conditions under which ambiguity

will be sought rather than avoided ? Another Ellsberg example (quoted in Becker & Brownson, 1964,

pp. 63-64, Footnote 4), illustrates ambiguity preference: Consider two urns with 1000 balls each. In

Urn 1, each ball is numbered from I to 1000, and the probability of drawing any number is .001. In

Urn 2, there are an unknown number of balls bearing any single number. For example, the

proportion of balls bearing number 687 could vary from 0 to 1. If there is a prize for drawing number

687 from the urn, would you prefer to draw from Urn 1 or Urn 2 ? Urn 1 contains no ambiguity

since the probability of winning is exactly .001; Urn 2 involves ignorance since all probabilities of
-.-

winning are equally likely. For many people, Urn 2 seems a more attractive bet than Urn 1. Hence,

there are situations in which ambiguity is preferred rather than avoided. We consider this in more

detail in the next section but note that accounting for such shifts in "attitudes toward ambiguity" is an

important criterion for judging the adequacy of any theory of ambiguity.

The Ambiguity Model

We now develop a model of how people assess uncertainty in ambiguous situations. To judge

the adequacy of our model, we establish the following criteria: (1) The model must be able to explain

the pattern of choices in Ellsberg's paradox. This means that the model should allow for sub- and

superadditivity of complementary probabilities; (2) The model should specify the conditions under

which people will avoid or seek ambiguity; (3) Individual differences should be captured by different

parameter values within the same general model; (4) The model should be empirically testable and

falsifiable.

zs -12 A
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Anchoring-and-Adjuswnem Srategy

The basic idea underlying the ambiguity model is that people use an anchoring-and-adjustment

strategy in which an initial probability is used as the anchor (or starting point), and adjustments are

made for ambiguity. The anchor probability can come from a variety of sources; it may be a

probability that is salient in memory, the best guess of experts, or a probability that is otherwise

available. Denote the anchor probability as p and the judged probability that results from the

anchoring-and-adjustment process as S(p). Thus,

S(p) = p + k (1)

where k is defined as the net effect of the adjustment process. The adjustment process is assumed to

involve a mental simulation in which higher and lower values of p are imagined. The rationale for this

is that since p can come from any one of a number of distributions, the imagining of different values

allows one to evaluate which of these distributions is more or less plausible. For example, in

assessing the probability of a defect in a new type of computer chip, one may have an estimate from

the engineering department that is based on meager data. One could then "try out' other values of p to

see if they are "in the ballpark." Once values of p are imagined and evaluated, they are incorporated

into the adjustment term, thereby allowing one to maintain sensitivity to both uncertainty and

ambiguity.

To model the net effect of the mental simulation process, k is assumed to be a function of three

factors:

(1) Level of the anchor, p - since 0:< S(p) < 1, k must lie in the interval, -p < k < 1-p. This means

that the sign of the adjustment must be partly due to the size of the anchor. Indeed, if p = 1, k must be

negative (or zero) and the adjustment will be downwards; similarly, if p = 0, k will be positive (or -.

zero) and the adjustment will be upwards. When 0 < p < 1, adjustments can be either up or down.

(2) Amount of ambiguity - the greater the amount of ambiguity, the larger the size of the simulation

(the bigger the ballpark). In the limiting case of no ambiguity, a mental simulation process is



unnecessary since the value of p is exactly known. In the case of ignorance, ambiguity is at its k
maximum and all values of p are equally plausible. We denote the parameter 0 as the amount of

ambiguity in the situation ( 0 5 0 5 1).

(3) Attitude toward ambiguity - this refers to the relative weighting of (imagined) probabilities that

are higher and lower than the anchor. We denote 13 as a parameter reflecting this relative weighting

(3 > 0). Note that one's attitude toward ambiguity is crucial in determining whether one adjusts

upwards or downwards. For example, if one gives more weight to higher probabilities than lower

ones, this generally results in upward adjustments to the anchor. On the other hand, if one gives

more weight to lower probabilities, downwards adjustments are more likely. The sign of k is thus

determined by P and p.

To model the adjustment process, let

k =kg- s (2)

where kg denotes the effect of imagining values of p greater than the anchor, and ks the effect of

imagining smaller values. Note that the maximum values of kg and k are (1 - p) and p, respectively

(since -p < k < l-p). However, the size of the simulation depends on the amount of ambiguity, 0. We

assume that kg and k can be represented as proportions of the maximum adjustments where 0 is the

constp- of proportionality; that is,

kg= 0 (1 - p) (3)
ksff0 p

~.=-p

Note that under no ambiguity, 0 =0, k =0, and S(p) = p for all p. Thus, adjustments to the anchor

only occur under ambiguity.

Now consider one's attitude toward ambiguity, 13. Since 13 represents the relative weighting of

higher versus lower probabilities, we need only weight either kg or k to affect k. For convenience,

we weight k by 13 as follows:

.-*1!', *9

9 
t• 

t
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kOp (4)

By substituting (3) and (4) into (2), the net effect of the adjustment for ambiguity (k) is given by,

k =0(1-p - pP) (5)

When Equation 5 is substituted into Equation 1, the full model becomes,

S(p) : p +0(1-p - p ) (6)

Note that the full model can also be expressed as,

S(p)=( 1 - O)p + 0 (1 -p) (7)

Equation 7 implies that the judged ambiguous probability is a weighted average of p and (1 - p13 ), !

where the weights reflect the amount of ambiguity, 0.

Implications of the model. Although the ambiguity model is derived from a small number of 0.

psychological assumptions, it is nevertheless rich in implications. We now consider these in some

detail. %,7

(1) The ambiguity model implies that S(p) is regressive with respect top. This can best be seen in

Figure 1, which shows S&) as a function of p for different values of j3, holding 0 constant (0>0). -
.-..

Insert Figure 1 about here .

In panel (a), 0 < < 1, which implies that probabilities lower than the anchor are weighted more

heavily than those above the anchor. This leads to downward adjustments ( i.e., k < 0 ) over most of

the range of p; hence, S(p) < p. However, it is important to note that f3 defines a "cross-over" point

..

. _ • . . .. . . . . . . . .... . ... .. ... . . .. .. CC.
/ .,e ... . ,. ... . • % , , . .. , , ., , . .... , • .... .. .. -.- , .. . .. ,. , , . .... , % h *,
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(denoted pc ) where S(p) = p. When p < pC, S(p) > p even though lower probabilities in the mental

simulation receive more weight than higher ones. Why does this occur? Recall that the sign of the

adjustment is determined by 13 and the level of p. For example, when p is small, there are fewer lower

probabilities to imagine and thus the net effect of the adjustment process is positive.

In panel (b), 0 > 1, which implies that probabilities higher than the anchor are weighted more

than lower ones. This results in upward adjustments over much of the range of p; hence, S(p) > p

when p < Pc. On the other hand, when p > Pc, the greater weight for imagined higher probabilities

does not compensate for their reduced number and S(p) < p. Now consider panel (c), where 13 = 1.

This implies that higher and lower probabilities are equally weighted in the simulation process; hence,

S(p) = p at .5.

(2) Equation 6 specifies the conditions under which judgments of complementary probabilities are

additive (sum to one). Specificially,

S(p) + S( -p)= + [ 1 -po -( -p) ] (8)

There are three sufficient conditions for additivity: (a) no ambiguity (9= 0); (b) equal weighting of

imagined probabilities (P = 1); and (c) the anchor probability expresses either certainty or

impossibility (p = 0,1). Otherwise, 1 < 1 implies subadditivity (shown in panel (a)), and P > 1

implies superadditivity (shown in panel (b)).

.* (3) Ellsberg's paradox and individual differences - we now discuss how the ambiguity model

explains the various patterns of responses to Ellsberg's paradox. First, consider someone with

parameter values as shown in panel (a); i.e., 0 > 0 and 0 < 0 < 1. In decisions under ambiguity, such

a person will effectively underweight p > Pc, and overweight p < Pc, thereby generating the typical

pattern of responses in Ellsberg's original problem. According to our model, most people choose the

nonambiguous urn when p = .5 because S(p = .5) < .5. Such a choice seems to reflect "ambiguity

avoidance." However, the same person who chooses the unambiguous urn when p = .5 often ,..

chooses the ambiguous urn when p = .001. From our perspective, if p = .001 is less than the

cross-over point (Pc ), S(p = .001) > .001 and "ambiguity seeking" at low probabilities is perfectly

V - * -. 4
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consistent with ambiguity avoidance at moderate to high probabilities (for positive payoffs). This also

explains some otherwise puzzling results in which lotteries with low but unreliable probabilities are

chosen over those with equally low and reliable probabilities (G~rdenfors & Sablin, 1982).

The ambiguity function shown in panel (a) of Figure 1 does not explain why some people in

the Ellsberg task prefer to choose the ambiguous urn when p = .5 (see the next section for empirical

evidence). However, consider a person with parameter values as shown in panel (b); i.e., 0 > 0 and

3 > 1. In this case, S(p = .5) > .5, which is consistent with ambiguity seeking in Ellsberg's original

problem. Because individual differences are rarely considered in decision making under uncertainty,

our model has the distinct advantage of positing a general process, yet allows for individual variations

via different parameter values.This is illustrated by considering people who are indifferent between

ambiguous and nonambiguous urns at p = .5. Our model distinguishes between two types; those for

whom 9 = 0 and, those with parameters values as shown in panel (c) (i.e., 0 > 0,13= 1). This latter

group does not adjust at p = .5 but does adjust at all other values of p. Hence, these people will only

be indifferent between lotteries at p = .5.

(4) Dynamic ambiguity - the ambiguity model presented here is static; it gives an account of judgment

under ambiguity at a given point in time. However, what happens as more information is obtained? In

the simple case where new information reduces ambiguity without changing the anchor probability

(i.e., new data increases the absolute amount of information without changing the relative balance of

positive and negative evidence), our model can be extended as follows: let v denote the amount of

new information acquired in time period t. Furthermore, let the judged ambiguous probability after

time period t, S(p)t , be written as,

S(p)t =p + (O/v) (- p -p ) (9)

Therefore, as v increases, the effect of ambiguity on the adjustment process decreases. Indeed, as v

gets very large, S(p)t approaches p. This also means that complementary probabilities will approach

additivity as v increases since,

- U %. . . . . . . . ..* .%" -



12

S(P)t + S(1-P)t - 1 + (O/v) [ 1- p -(I-p) J)] (10)

(5) The version of the ambiguity model shown in panel (a) bears a striking resemblance to the

decision weight function of prospect theory (Kahneman & Tversky, 1979). In that theory, the effects

of uncertainty on choice are modeled via a decision weight function, x(p), that is subadditive, has

undefined end points, and displays "subploportionality". This latter characteristic implies that the

slope of the decision weight function is less than 1 for all p (i.e., x(p) is flatter than the diagonal).

These characteristics, together with a value function defitied on gains and losses, accounts for many

choice paradoxes. Since prospect theory concerns gambles with well-defined probabilities, its

domain is different from ours. Nevertheless, we believe that the similarity in representing how

uncertainty affects choice is not coincidental (see Discussion section).

(6) We have implicitly assumed that the parameters 9 and 13 are such that S(p) is monotone increasing

with p. However, the function shown in Equation 6 is sufficiently flexible so that nonmonotone as

well as decreasing monotone functions are possible. In fact, we have found some evidence for

nonmonotonicity in studies fitting the ) and 03 parameters to probability judgments under ambiguity

(Einhom & Hogarth, 1985). Moreover, a situation in which S(p) is likely to be a decreasing function

of p arises when the surface meaning of data suggests the opposite conclusion; for example, imagine

someone who "protesteth too much:' or a suspect who is "framed" for a crime. If we denote 0* as

reflecting the credibility of the data (where higher values of 0* mean lower credibility), then lack of

credibility (0* = 1) implies that,

S(p)= 1p (11)

Thus, as p increases, S(p) decreases. More generally, as 0* increases, it reaches a point, conditional

on p and 3, where the data for a hypothesis starts to count against it.

Empirical Evidence

The ambiguity model can be tested in a variety of ways. Three studies are presented that ':.

' 4' a'* ~ f~/~ * ~**.*~*<'- <' .*4'y~; v . .~~' . *'Jb
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investigate (a) variations of the Ellsberg paradox; and (b) implications of the model for buyers and

sellers of insurance and a wan'anty (Einhorn & Hogarth, 1985; Hogarth & Kunreuther, 1985a,

1985b).

Ellsberg Revisitd

The ambiguity model predicts both ambiguity seeking and avoidance, depending on p, the size

of the anchor probability, and P, one's attitude towad ambiguity. To examine this, first consider

choices involving positive payoffs. Recall that in the original version of the paradox, people are

offered a $100 payoff if they choose a specified colored ball drawn from one of the urns. The basic

result is that most people prefer to draw from the unambiguous urn, indicating ambiguity avoidance.

However, if the probability of winning is small, Ellsberg conjectured that people would prefer to

draw from the ambiguous urn, thereby displaying ambiguity seeking. To our knowledge, this latter

hypothesis has not been put to an empirical test. Since the ambiguity model can predict both

ambiguity avoidance for p = .5 and ambiguity seeking for low probabilities (see Figure 1, panel (a)),

a simple choice experiment that varies the probability of winning should provide evidence on

Ellsberg's conjecture as well as the adequacy of the model.

In addition to varying the probabilities in Ellsberg's paradox, we investigated whether attitudes

toward ambiguity change when negative, rather than positive payoffs, are involved. This is important

since loss gambles with ambiguous probabilities are quite common, especially in insurance (see next

section for empirical evidence). Moreover, the simulation process underlying our model can be taken

to imply that the assessment of ambiguous probabilities will result in a differently shaped function for

losses as opposed to wins. To see this, assume that people are generally cautious in assessing

uncertain probabilities. When assessing loss probabilities, they should therefore give more weight to

higher values of the (simulated) loss probabilities than to lower values. This will result in an

overestimation of loss probabilities, especially in the low to moderate range. Note that the

overestimation of ambiguous loss probabilties and the underestimation of ambiguous win

probabilities are both consistent with a general conservative attitude toward ambiguity.We now turn

to a test of these ideas.

I I + + I+
I

t* Ii • 
I

l i l I l tl i t m I .
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Experimental design and rewuls. There were two tasks in which subjects were asked to choose

(or express indifference) between drawing a specified type of ball from either an ambiguous or

nonambiguous urn. In the first task, subjects were asked to imagine two urns each containing 100

balls. They were further told that half of thde balls in one urn were red and half black ( the

unambiguous case), but they were not informed as to the proportions of red and black balls in the

second urn (the ambiguous case). The payoff was contingent on drawing a ball of a specified color

(red or black). In the second task, subjects were asked to imagine two urns each containing 1000

balls. In the nonambiguous urn, the balls were numbered consecutively from 1 to 1000 and subjects

were told that the payoff was contingent on drawing ball number 687 (p = .001). In the ambiguous

case, subjects were told that any proportion of the 1000 balls could be number 687.

Thus, the first task involved choosing (or expressing indifference) between an ambiguous or

nonambiguous urn where the probability of the payoff was known to be .5 for the latter urn. The

second task was similar in structure except that the probability of the payoff in the nonambiguous

case was .001, The study investigated the effects of positive and negative payoffs by asking subjects

to imagine prizes or penalties of $100. All subjects responded to both tasks but were randomly

allocated to two groups. In one group, subjects were given the first task (p=.5) with a positive payoff

and the second (p=.001) with a negative payoff. In the second group, this manipulation was reversed

(i.e., negative payoff at .5 and positive payoff at .001).

The subjects were 274 MBA students at the University of Chicago who responded to

questionnaires distributed at the beginning of a course on decision making.

Insert Table 1 about here

The main results are shown in Table 1. First, consider the results for positive payoffs when the

choice is between an urn with known p = .5 and an ambiguous urn. The modal response (47%)

favors the nonambiguous urn, thereby supporting Ellsberg's hypothesis of ambiguity avoidance.

However, a considerable proportion exhibits indifference (34%), (perhaps reflecting business school

training ), and a surprising 19% of subjects are ambiguity seeking. Now consider the choice pattern

q-. :., . . .: .,....,:. ,. ,;..;..,.- .' '. ,',. , , . ,.' .:.: , ,.,,..' .,...,.,,....,:
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when the known probability is small (p - .001). Although the modal response still favors the

nonambiguous urn (43%), the choice of the ambiguous urn increases from 19% to 35%.

Next, consider the results for negative payoffs when p . .5. The modal response is now indifference

(56%) and ambiguity seeking is sharply reduced to 14%. Futherrnore, when p - .001, ambiguity

seeking is further reduced (to 5%) and the modal response shifts to strong ambiguity avoidance

(75%). Hence, there are large differences in responses to ambiguity between gambles with positive

and negative payoffs.

In terms of the ambiguity model, the overall pattern of results can be summarized by referring

back to panels (a) and (c) in Figure 1. Note that panel (a) shows an ambiguity function that is

consistent with the experimental results for positive payoffs. Thus, there is ambiguity avoidance for

p =.5 but ambiguity preference for p =.001. The shape of the ambiguity function for negative payoffs

is consistent with panel (c). In this case, loss probabilities are overestimated until p = .5 (at which 4

point S(P) p)' but underestimated when p > .5. This latter prediction was not explictly tested in

this study but is investigated below.

The buying and selling of insurance provides an important context to test the ambiguity model

for two reasons: (1) Buyers and sellers often have different amounts of information concerning the v

probability of the event to be insurec. Thus, they may not experience the same amount of ambiguity

in assessing the occurrence of a potential loss; (2) Buyers of insurance are trying to transfer their risk

and are willing to pay a premium ( thus suffering a sure loss) to do so. On the other hand, sellers of
insurance are taking on a risk in the belief that the probability of losing the bet with the buyer is in

their favor. In terms of the simulation process underlying our model, we hypothesize that sellers will

give more weight than buyers to the higher simulated loss probabilities. The rationale for this is based

on the greater cost to the seller of underestimating loss probabilities. Note that the buyer may also

overestimate the probability of loss by weighting higher loss probabilities more than lower ones, but

our hypothesis concerns the comparison between buyers and sellers. In fact, there is some empirical

evidence consistent with the notion that the person who assumes a risk gives more attention to higher

.1N
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values of the loss probability than someone who transfers the risk (Hershey, Kunreuther, and

Schoemaker, 1982; Thaler, 1980). In terms of our model, the above hypothesis implies that,

Pseller > Pbuyer

In order to explicate how these differences can be captured by our model, consider Figure 2,

Insert Figure 2 about here

which shows a simplified 2x2 classification of buyers and sellers in either an ambiguous or

nonambiguous state. In cell 1, buyers and sellers are well acquainted with the probabilities of the

potential loss and are thus in a nonambiguous state. In this case, 0 = 0 and S(p) = p for both buyers

and sellers. If it is assumed that selling and buying prices for insurance are the same monotonic

function of S(p), then we predict that buyers and sellers should have the same buying and selling

prices for insurance over the full range of loss probabilities. Thus, we expect that the sellers'

premiums will be equal to the prices buyers are willing to pay. Now consider the more typical case

shown in cell 2, in which the seller is not ambiguous (due to actuarial data, for example), but the

buyer is. In this situation, 0 = 0 and S(p) = p for the seller; however, the ambiguous buyer will

overestimate most of the loss probabilities, S(p) > p, until the ambiguity function crosses the

diagonal, after which S(p) < p. We therefore predict that the buyer will be willing to pay more for

insurance than the seller asks at small and even moderate values of p. However, above some value of

p, the buyer will not be willing to pay the premium asked by the seller.

The situation shown in cell 3 is less likely although one example may be the case of new

technologies in which inside information is available to the buyers (e.g., owners of the new

companies) but not to the sellers. In any event, we predict that sellers will overestimate the loss

probabilities over most of the range of p (i.e., S(p) > p), while S(p) = p for the buyers. This implies

that for most probabilities, sellers will set premiums that are higher than buying prices. Finally,

consider cell 4, which shows the situation where buyers and sellers are both ambiguous, and assume

that Oseller = Obuyer According to our argument, if JPseller > Pbuyer, then S(P)seller > S(P)buyer

I over the full range of p. Hence, we predict that the sellers' premiums will be higher than buying

!5 Ss.'. . . . .
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prices for all oss pmbabilities

The four predictions that follow from the ambiguity model ate summarized in Figure 3 which

shows the implied ambiguity funictions for buyers and sellers under both ambiguous and

Insert Figure 3 about here

nonambiguous conditions. Prediction I states that buyers and sellers will have equal prices when they

are both nonambiguous; i.e., S(p) - p for both buyers and sellers. Prediction 2 concerns

nonambiguous sellers and ambiguous buyers. Note that the buyers should be willing to pay more for

insurance than the sellers ask, up to the point where S(p) - p; after this point, buyers should be

unwilling to pay what sellers ask. Prediction 3 concerns ambiguous sellers and non-ambiguous

buyers. In this case, sellers' premiums should be larger than buying prices over most of the range of

p. Finally, Prediction 4 concerns the case when buyers and sellers are both ambiguous. This situation

results in premiums that are higher than buying prices over the whole range of loss probabilities.

Experimental design and results. Prices for insurance were investigated for ambiguous and

nonambiguous loss probabilities of .01, .35, .65, and .90. Subjects were given a scenario in which

the owner of a small business with assets of $110,000 was seeking to insure against a possible

$100,000 loss. The probability of the loss (due to a defective product) was given at one of the four

levels in both the ambiguous and nonambiguous conditions. However, a comment was added as to

whether one could "feel confident" (nonambiguous case) or "experience considerable uncertainty"

(ambiguous case) concerning the estimate. In addition, half the subjects were told that they were

sellers of insurance and the other half were assigned the role of buyers. The sellers were asked to

imagine they headed a department in an insurance company and were authorized to set premiums. The

buyers were told to imagine that they were the owner of the company. As far as possible, the same

wording was used in both the buyer and seller versions of the scenario. After reading the scenario,

subjects were asked to state maximum buying prices (for buyers) or minimum selling prices (for

sellers).

The experimental design involved having different subjects as buyers or sellers at each of the



four probability levels. Thus, there were 8 different groups of subjects (2x4). Each subject was given

both the ambiguous and nonambiguous version of the scenario. Therefore, the design involved a

within subjects factor (ambiguity/nonambiguity) and two between subjects factors (probability levels

and buyer versus seller). The subjects were 112 MBA students at the University of Chicago. These

subjects had prior training in business, economics, and statistics, and the insurance context was

familiar to them.

The basic results are shown in Table 2, which shows the median prices for all experimental

conditions (medians are reported since several distributions within conditions are quite skewed).

Insert Table 2 about here

Our first prediction concerns columns (1) and (3), buyers and sellers nonambiguous. We

predicted that the prices would be equal for buyers and sellers and the results support the prediction.

The second prediction concerns columns (2) and (3), buyers ambiguous and sellers nonambiguous.

Note that the buyers are willing to pay more for insurance than the sellers ask at p = .01 ($1500 vs.

$1000), but the prices are (approximately) equal at p = .35; thereafter, the buying price is less than

the seller's asking price. This pattern is exactly predicted by our model. The third prediction concerns

columns (1) and (4), nonambiguous buyer and ambiguous seller. Here the seller's price is higher

than the buyer's over the range of p, in accord with our prediction. However, our model also implies

that at very high p, the seller's price should be lower than the buyers and this is not observed in these
data. On the other hand, the ratio of premiums to buying prices decreases as p increases, which does

* accord with our model. Finally, consider our fourth prediction, which involves columns (2) and (4),

buyer and seller both ambiguous. As predicted, the seller's price is higher than the buyers for all

values of p. In Hogarth and Kunreuther (1985a; 1985b), the results of several related experiments

are reported using different scenarios, research designs, subjects, and response modes. The results of

those experiments are consistent with the findings reported here.

U,%
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Wwant Pricing

A warranty is a particular type of insurance contract in which the seller agrees to fix, replace, or

otherwise make good, the product sold to the buyer. The buyer, in turn, agrees to pay a premium for

the warranty (we assume that products sold with warranties have the premium incorporated into the

price of the product). The purpose of the pesent study was to test the ambiguity model in the context

of buying and selling a warranty. In addition, the subjects in the experiment were executives in life

insurance companies rather than business students. This gave us a chance to see whether our

previous results would replicate in a different context and with a more sophisticated and

knowledgeable subject population.

Fxperimental design and results. The subjects were 136 executives in life insurance companies

attending a management seminar. They completed a questionnaire given to them the evening before

the seminar began. The question of interest for this study involved a scenario describing a new

personal computer that was about to be distributed by the owner of a computer store. The probability

of a defect in the computer requiring repair was given as .05, .25, or .75. In the ambiguous

probability condition, it was stated that there was little experience with the actual use of the computer

and that there was considerable disagreement among experts concerning the probability of a defect. In

the nonambiguous condition, it was stated that there was considerable testing of the computer and one

could be confident in the estimated defect probabilities upon which all experts agreed. Half the

subjects were assigned to the ambiguous condition and the other half to the nonambiguous condition. *

In addition, for each of these groups, subjects were further divided into buyers (i.e., consumers) or

sellers (computer store owners). The sellers were asked to set a minimum price for the warranty on

the computer, the buyers were asked to state the maximum price they would pay for a warranty. The

cost of fixing the defect was stated to be $400. To summarize, the design of the study involved four

separate groups depending on whether subjects were buyers or sellers, and whether the probabilities

were ambiguous or not. Furthermore, each subject was asked to state either a buying or selling price

for each of the three probability levels. Thus, probability levels were varied as a within subject factor.

The median prices for all experimental conditions are shown in Table 3.

• .J
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Insert Table 3 about here

We discuss these results in terms of the four predictions made in the insurance study. First,

when buyers and sellers are non-ambiguous (columns (1) and (3)), premiums and buying prices

should be equal. This holds for p = .05, approximately so for p = .25, but not for p = .75. Second,

when buyers are ambiguous and sellers are unambiguous (columns (2) and (3)), our model predicts

that buyers are willing to pay more than sellers ask at low probabilities, but less than sellers ask for

moderate to high probabilities. This pattern is supported by the data. Third, when buyers are

nonambiguous and sellers are ambiguous (columns (1) and (4)), the model predicts that premiums

will be higher than buying prices over most of the range of p. Note that this is indeed the case.

However, as was the case in the insurance study, we do not find that the buyer's price is above the

seller's at very high probabilities. Fourth, when buyers and sellers are both ambiguous (columns (2)

and (4)), we predict that the seller's price will be higher than the buying price over the whole range of -.

p. As can be seen, this is the case. Taken together, these findings essentially replicate the results from

the insurance study.

Although we have presented three experiments testing the implications of the ambiguity model,

the interested reader is referred to further experiments in Einhorn and Hogarth (1985). These concern

the fitting of 0 and J parameters to individual subjects' probability judgments, the prediction of sub-

and superadditivity of complementary probabilities, and the prediction of choices based on the fit of

the model to probability judgments. In general, the results of these studies are consistent with the

implications from the modeL

Discussion

We first consider our theoretical and empirical results with regard to choice under ambiguity.

Thereafter, we discuss possible extensions of the model to the case where probabilities are not

ambiguous.

Our model for assessing ambiguous probabilities can be extended in a straightforward way to

4'

- - a . *~. a



21

include an explicit decision rule for choice under ambiguity. We first assume, in accord with prospect

theory (Kahneman & Tversky, 1979), that the subjective worths of outcomes are defined over gains

and losses rather than final asset positions. Denote wG and wL as the subjective worths of the

amounts to be gained and lost in a two-outcome gamble, respectively. We then define the concept of

expected worth under wnbiguity (EWA) as,

EWA = w0 S(pG) + wL S(p.) (12) T.d

where, S(PG) and S(pl) are the ambiguous probabilities of gaining and losing. Moreover, we

assume that people choose amongst ambiguous gambles in accord with EWA; that is, one chooses to

maximize EWA. We make several points with respect to the rule embodied in (12): (a) Under no

ambiguity, S(Pw) = pW, S(pl) = PL,, and EWA is equivalent to the expected utility model (except

that subjective worths are defined over gains and losses); (b) Although our model implies that S(p)

can be both nonmonotonic and negatively related to p (depending on the values of 0 and 3), we

restrict these parameters in choice under ambiguity (and uncertainty, see below) so that S(p) is always

an increasing function of p. To do otherwise would permit violations of dominance. However, we

do permit violations of dominance to occur in judgments. Indeed, some evidence for this has been

found by Goldstein and Einhorn (1986), using minimum selling price judgments for gambles. Since

judgment and choice may not be psychologically equivalent (Einhorn & Hogarth, 1981; Slovic,

Fischhoff, & lichtenstein, 1982), the distinction between the ambiguity model for judgment and the

EWA model for choice is not unreasonable; (c) We are aware of only two other rules for dealing with

ambiguous choice; one due to Ellsberg (1961, pp. 664-669) and the other to Girdenfors and Sahlin

(1982). However, neither of these rules allows for ambiguity seeking and avoidance. Moreover,

these rules do not imply different ambiguity functions for gains and losses. On the other hand,

Equation (12) does account for ambiguity seeking and avoidance for both gains and losses. Recall

that in Experiment 1, the results for the $100 payoff showed ambiguity avoidance at PG = .5, but

considerable ambiguity preference at PG = .001. If the ambiguity function for gains is as shown in

panel (a) of Figure 1, it follows from (12) that,
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w($100) S(p G = .5) < w($100) (.5) and,

w($100) S(PG = .001) > w($100) (.001)

Hence, there is ambiguity avoidance at moderate to high gain probabilities and ambiguity preference !U

at low gain probabilities. It is possible, with appropriate values of 0 and 03, to account for other

patterns of choice. In particular, since many people in Experiment 1 chose to avoid the ambiguous

urn at pG = .001, 3 could be made smaller so that it crosses the diagonal at a PG value less than

.001. We believe that S(pG) will eventually cross the diagonal at some point because otherwise a

person would prefer a sure probability of no gain (i.e., PG = 0) to an ambiguous probability of no

gain, S(PG = 0). Because the latter offers some non-zero chance of a gain as opposed to no chance,

we would expect ambiguity seeking to occur below some value of PG"

Now consider the choices under ambiguity for the loss payoff in Experiment 1. Recall that in

this case, when pL = .5, indifference between the urns was the largest response; when pL = .001,

ambiguity avoidance was the overwhelming response. This pattern implies that,

w(-S100) S(pL = .5) = w(-$100) (.5) and,

w(-$100) S(pL = .001) < w(-$100) (.001)

This pattern is consistent with an ambiguity function for losses such as that shown in panel (c) of

Figure 1. Note that this function also implies ambiguity seeking for losses when pI > .5 ; i.e.,

S(P]L) < pL for pL > .5. Reasoning in a manner analogous to the case for gains, we believe that

ambiguity seeking will occur for some (high) loss probabilities otherwise a sure loss (pL = 1) would

be preferred to an ambiguous loss, S(pL = 1). It is an empirical question as to what the cross-over

point will be in any particular situation.

An interesting aspect of our model is that it implies a lack of independence between ambiguous

probabilities and the sign of utilities; i.e., different ambiguity functions depend on whether one is

dealing with gains or losses. Furthermore, since we have asssumed that Pgain < Iloss, choices under

ambiguity that deal with pure gain gambles are likely to imply subadditivity of complementary

probabilities (OG < 1), while those dealing with pure loss gambles should lead to less subadditivity,

including additivity (13L = 1) and even superadditivity (I3L >1). While more data are needed to test

this hypothesis, it suggests the need for a "dual probability function" in choices under ambiguity (cf.

e .7."-A . " " , ;" - .' - ". -•' ""' '' " " " ' " ' ' "" " ' - - * "" " " " "" "L , " "" . - -. -. , .- , .,4 " """ "" " '' " . . . . .
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Irwin, 1953; Luce & Narens, 1985; Marks, 1951; Nygren & Isen, 1985). In fact, Edwards (1962)

commented on the nonindependence of the sign of utilities and probabilities some 25 years ago;

All of these findings strongly indicate that there is at least an
interaction between the sign of the utility of a bet and the subjective
probability associated with the event ...Furthermore, the direction
of the effects is in general the direction predicted by the Irwin
subjective probability theory. None of the evidence, however,
indicates an interaction between value and subjective probability
provided that the signs of the utilities involved do not change.
(pp.45-46)

Our results regarding buying and selling prices for insurance and a warranty (Experiments 2

and 3) raise the important question as to how one's "perspective" influences the assessment of

ambiguous uncertainties. For example, consider the difference between those who live near the site of

a planned nuclear power plant and the nuclear engineers who are designing it. The former may

experience a great deal of ambiguity about the probability of an accident and greatly overestimate this

relative to the engineers' "best guess." The importance of perspective can also be seen in situations

where the participants to a dispute code the outcomes in terms of gains versus losses. For example,

consider a defendant and plaintiff in a lawsuit where the lawyers for both sides estimate the

probability of winning as .5 but neither side is confident in the estimate. From the plaintiffs point of

view, one needs to assess the ambiguous probability of a gain, S(PG); from the defendant's point of

view, one needs to assess the ambiguous probability of a loss, S(pL). If these two functions are not

the same (as we have argued), the relative sizes of PL and PG will determine whether both sides are

overconfident, underconfident (and thus settle out of court), or one side wishes to settle but the other

refuses. According to our analysis, we expect that in general, 13G < PL, reflecting cautious attitudes

and thus underconfidence by both parties. This implies that most lawsuits will be settled out of court,

as indeed occurs in 95% of cases (see, Gould, 1973, where an expected utility analysis assuming

known probabilities is also consistent with this evidence). While the decision to go to trial or settle

out of court is more complicated than indicated by our present discussion, our purpose is to

emphasize that one's perspective can affect the assessment of ambiguous probabilities and the ,h.

decisions on which they are based.

,-p .
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Extension to known probabilities. The simulation process underlying the assessment of

ambiguous probabilities provides a plausible psychological mechanism to account for probability

"weights" that differ from stated probabilities in descriptive theories of risk. To see how such weights

can result from a simulation process when probabilities are explictly given, an auxiliary process must

be hypothesized that accounts for imagining and differentially weighting higher and lower values of

the stated probabilities. Imagine that the size of a payoff, like the size of a planet, exerts a

gravitational force on those objects or factors (such as uncertainties) that are associated with it. The

effect of this "force" could be modeled via the simulation process (including optimistic or pessimistic

attitudes captured by different values of 0) such that decision weights would differ from stated

' probabilities. If this were the case, utilities and probabilities would not only be sign dependent (as

- discussed before), but-size dependent as well. In fact, evidence for size dependence has been found

by Wothke (1985) and Hogarth & Einhorn (in preparation). For example, choices in many

well-known utility theory paradoxes (e'g., Allais, 1953) are not paradoxical vis-k-vis utility theory

when payoffs are small as opposed to large. *

If one equates choices that are consistent with utility theory as reflecting "rationality" (cf.

. Einhorn & Hogarth, 1981), there is considerable irony in the fact that in these cases large incentives

- produce less rational choice than small incentives. On the other hand, such results are consistent with

evidence showing that the relation between performance and motivation (which we equate with

incentive size) is single-peaked (e.g., Yerkes & Dodson, 1908). Hence, there is often an optimal

amount of motivation beyond which performance declines. Performance, however, depends on both

cognition and motivation. Thus, if incentive size can be thought of as analogous to the speed with

which one travels in a given direction, cognition determines the direction. Therefore, if incentives are

high but cognition is faulty, one gets to the wrong place faster. Clearly, much remains to be done in

explicating the relations between incentive size, the assessment of uncertainty, and the effects of both

on choice.

In addition to the effects of size and sign of payoff on probabilities, the simulation process

suggests that changes in the 0 parameter can be used to model context effects in the choice process.

* For example, consider the work of Hershey and Schoemaker (1980) on choices between a sure
t." --.
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loss and a gamble, as compared to deciding whether or not to buy insurance (which also involves a

sure loss versus a gamble). Table 4 shows the different responses when structurally equivalent

gambles are framed in terms of both an insurance and a gambling context. The results show a higher

Insert Table 4 about here

percentage of risk averse choices for the former. Why ? We argue that, relative to gambling, the

insurance context induces a greater attitude toward caution (Le., more weight is given to imagining

values of the probability greater than the anchor), and this is reflected in different P parameters in the

two contexts; specifically, Dinsurance > Pgambling- This implies that S(PL)insurance >

S(POTgambling, such that greater risk aversion is observed in the insurance as compared to the

gambling context.

Conclusion

The study of risk has been dominated by a single metaphor- the explicit lottery with stated

probabilities and payoffs. However, as noted by Lopes (1983),

The simple, static lottery or gamble is as indispensible to
research on risk as is the fruitly to genetics. The reason is
obvious; lotteries, like fruidflies, provide a simplified lab-
oratory model of the real world, one that displays its
essential characteristics while allowing for the manipulation .'"

and control of important experimental variables. (p. 137)

We believe that it is time to move beyond the tidy experiments and axiomizations built upon the

explicit lottery. The real world of risk involves ambiguous probabilities, dependencies between

probabilities and utilities, context and framing effects (Thaler, 1985; Tversky & Kahneman, 1981),

regret (Bell, 1982), "illusions of control" (Langer, 1975), and superstitions (Skinner, 1966). Given

the richness of the phenomena before us, our biggest risk would be to ignore them.
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Table I

Ellsberg Paradox with Gains and Losses at Two

Probability Levels

:n Ambiguous Nonambi guous Indifference a

Conditions urn urn / otal

Win S100

p = .5 25 (1 92) 63 (472) 45 (342) 133 *-r

p = .001 48 (35Z) 60 (43Z) 30 (22Z) 138

Lose $100

p = .5 18 (142) 40 (302) 75 (562) 133

p = .001 7 (52) 106 (752) 28 (202) 141

.44.
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Table 2

Median Buying and Selling Prices for Insurance

Buyers Sellers

(1) (2) (3) (4)
Probs Nonambig. Ambig. Nonambig. Ambig.

.01 1,000 1,500 1,000 2,500

.35 35.000 35,000 37,500 52,500

.65 65,000 45,000 65,000 70,000

.90 82,500 60,000 90,000 90.000

4° -
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Table 3

Median Buglng and Selling Prices for Warranty

Buyers Sellers

Prob.(1) (2) (3) (4)
Probs_ Nonambig. Ambig. Nonambig. Ambig.

.05 20 25 20 40

.25 90 50 100 120 ,. I

.75 200 100 300 300

.." .%.

1'*.%

*1,
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Table 4

Effect of Insurance versus Gambling Context
For a Possible $ 10,000 Loss

X Preferring X Preferring
Sure Loss - Sure Loss -

Probability Sure Loss Insurance Gambling

.001 10 81 54

.01 100 66 46

.10 1000 59 29

.50 5000 39 32 V.

.90 9000 34 24

.99 9900 27 22

.999 9990 17 17

-.5 -.-
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Figure Captions

Figure I. S(p) as a function of p for values of 0 and 1.
Figure 2. Classification of insurance situations.

Figure 3. Approximate ambiguity functions for buyers and sellers of insurance.
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